
Cgraph Tutorial

Stephen C. North∗

AT&T Shannon Laboratory, Florham Park, NJ, USA
north@research.att.com

1 March 2013

∗Updated by Emden R. Gansner

1

Contents

1 Introduction 3

2 Graph Objects 3

3 Graphs 4

4 Nodes 5

5 Edges 6

6 Traversals 7

7 External Attributes 8

8 Internal Attributes 10

9 Subgraphs 11

10 Utility Functions and Macros 12

11 Error Handling 13

12 Strings 14

13 Expert-level Tweaks 15
13.1 Callbacks . 15
13.2 Disciplines . 16

13.2.1 Memory management 17
13.2.2 I/O management . 18
13.2.3 ID management . 20

13.3 Flattened node and edge lists . 22

14 Related Libraries 22

15 Interfaces to Other Languages 23

16 Open Issues 23

17 Example 24

2

1 Introduction

Cgraph is a C library for graph programming. It defines data types and operations
for graphs comprised of attributed nodes, edges and subgraphs. Attributes may
be string name-value pairs for convenient file I/O, or internal C data structures for
efficient algorithm implementation.

Cgraph is aimed at graph representation; it is not an library of higher-level
algorithms such as shortest path or network flow. We envision these as higher-
level libraries written on top of Cgraph. Efforts were made in Cgraph’s design to
strive for time and space efficiency. The basic (unattributed) graph representation
takes 104 bytes per node and 64 bytes per edge, so storage of graphs with millions
of objects is reasonable. For attributed graphs, Cgraph also maintains an internal
shared string pool, so if all the nodes of a graph have color=red, only one copy
of "color" and "red" are made. There are other tricks that experts can exploit
for flat-out coding efficiency. For example, there are ways to inline the instructions
for edge list traversal and internal data structure access.

Cgraph uses Phong Vo’s dictionary library, libcdt, to store node and edge sets.
This library provides a uniform interface to hash tables and splay trees, and its API
is usable for general programming (such as storing multisets, hash tables, lists and
queues) in Cgraph programs.

Notation In the following, we use TRUE to denote a non-zero value, and
FALSE to denote zero.

2 Graph Objects

Almost all Cgraph programming can be done with pointers to these data types:

• Agraph_t: a graph or subgraph

• Agnode_t: a node from a particular graph or subgraph

• Agedge_t: an edge from a particular graph or subgraph

• Agsym_t: a descriptor for a string-value pair attribute

• Agrec_t: an internal C data record attribute of a graph object

Cgraph is responsible for its own memory management; allocation and deallo-
cation of Cgraph data structures is always done through Cgraph calls.

3

3 Graphs

A top-level graph (also called a root graph) defines a universe of nodes, edges,
subgraphs, data dictionaries and other information. A graph has a name and two
properties: whether it is directed or undirected, and whether it is strict (multi-edges
are forbidden). 1

Note that nodes, edges and subgraphs exists in exactly one root graph. They
cannot be used independently of that graph, or attached to another root graph.

The following examples use the convention that G and g are Agraph_t*
(graph pointers), n, u, v, w are Agnode_t* (node pointers), and e, f are Agedge_t*
(edge pointers).

To make a new, empty top-level directed graph:

Agraph_t *g;
g = agopen("G", Agdirected, NULL);

The first argument to agopen is any string, and is not interpreted by Cgraph,
except it is recorded and preserved when the graph is written as a file.2 The sec-
ond argument indicates the type of graph, and should be one of Agdirected,
Agstrictdirected, Agundirected, or Agstrictundirected. The
third argument is an optional pointer to a collection of methods for overriding cer-
tain default behaviors of Cgraph, and in most situations can just be NULL.

You can get the name of a graph by agnameof(g), and you can get its prop-
erties by the predicate functions agisdirected(g) and agisstrict(g).

You can also construct a new graph by reading a file:

g = agread(stdin,NULL);

Here, the graph’s name, type and contents including attributes depend on the
file contents. (The second argument is the same optional method pointer mentioned
above for agopen).

Sometimes it is convenient to have the graph represented concretely as a char-
acter string str. In this case, the graph can be created using:

g = agmemread (str);

You can write a representation of a graph to a file:

g = agwrite(g,stdout);

1It is possible to specify that a graph is simple (neither multi-edges nor loops), or can have multi-
edges but not loops.

2An application could, of course, maintain its own graph catalogue using graph names.

4

agwrite creates an external representation of a graph’s contents and attributes
(except for internal attributes), that can later be reconstructed by calling agread
on the same file.3

agnnodes(g), agnedges(g) and agnsubg(g) return the count of nodes,
edges and (immediate) subgraphs in a graph (or subgraph).

To delete a graph and its associated data structures, freeing their memory, one
uses:

agclose(g);

Finally, there is an interesting if obscure function to concatenate the contents
of a graph file onto an existing graph, as shown here.

g = agconcat(g,stdin,NULL);

4 Nodes

In Cgraph, a node is usually identified by a unique string name and a unique inter-
nal integer ID assigned by Cgraph. (For convenience, you can also create ”anony-
mous” nodes by giving NULL as the node name.) A node also has in- and out-edge
sets, even in undirected graphs.

Once you have a graph, you can create or search for nodes this way:

Agnode_t *n;
n = agnode(g,"node28",TRUE);

The first argument is a graph or subgraph in which the node is to be created.
The second is the name (or NULL for anonymous nodes.) When the third argu-
ment is TRUE, the node is created if it doesn’t already exist. When it’s FALSE, as
shown below, then Cgraph searches to locate an existing node with the given name,
returning NULL if none is found.

n = agnode(g,"node28",FALSE);

The function agdegree(g, n, in, out) gives the degree of a node in
(sub)graph g, where in and out select the edge sets.

• agdegree(g,n,TRUE,FALSE) returns the in-degree.
3It is the application programmer’s job to convert between internal attributes to external strings

when graphs are read and written, if desired. This seemed better than inventing a complicated way
to automate this conversion.

5

• agdegree(g,n,FALSE,TRUE) returns the out-degree.

• agdegree(g,n,TRUE,TRUE) returns their sum.

The function agcountuniqedges is identical to agdegree except when the
last two arguments are both TRUE. In this case, a loop is only counted once.

agnameof(n) returns the printable string name of a node. Note that for
various reasons this string may be a temporary buffer that can be overwritten by
subsequent calls. Thus, the usage

printf("%s %s\n",agnameof(agtail(e)),agnameof(aghead(e)));

is unsafe because the buffer may be overwritten when the arguments to printf are
being computed.

A node can be deleted from a graph or subgraph by agdelnode(g,n).

5 Edges

An edge is a node pair: an ordered pair in a directed graph, unordered in an undi-
rected graph. For convenience there is a common edge data structure for both kinds
and the endpoints are the fields tail and head. 4

Because an edge is implemented as an edge pair, there are two valid pointers to
the same edge, so simple pointer comparison does not work for edge equality. The
function Ageqedge(Agedge_t *e0, Agedge_t *e1) evaluates to true if
the two pointers represent the same abstract edge.

An edge is made using

Agnode_t *u, *v;
Agedge_t *e;

/* assume u and v are already defined */
e = agedge(g,u,v,"e28",TRUE);

u and v must belong to the same graph or subgraph for the operation to suc-
ceed. The “name” of an edge (more correctly, identifier) is treated as a unique
identifier for edges between a particular node pair. That is, there can only be at
most one edge with name e28 between any given u and v, but there can be many
other edges e28 between other nodes.

4When an edge is created, the first node will be used as the tail node, and the second node as the
head.

6

agtail(e) and aghead(e) return the endpoints of e. If e is created as in
the call to agedge above, u will be the tail node and v will be the head node. This
holds true even for undirected graphs.

The value e->node is the “other” endpoint with respect to the node from
which e was obtained. That is, if e is an out-edge of node n (equivalently, n is the
tail of e), then e->node is the head of e. A common idiom is:

for (e = agfstout(g,n); e; e = agnxtout(g,e))
/* do something with e->node */

agedge can also search for edges:

/* finds any u,v edge */
e = agedge(g,u,v,NULL,FALSE);
/* finds a u,v edge with name "e8" */
e = agedge(g,u,v,"e8",FALSE);

In an undirected graph, an edge search will consider the given vertices as both
tail and head nodes.

An edge can be deleted from a graph or subgraph by agdeledge(g,e). The
agnameof function can be used to get the “name” of an edge. Note that this will
be the identifier string provided at edge creation. The names of the head and tail
nodes will not be part of the string. In addition, it returns NULL for anonymous
edges.

6 Traversals

Cgraph has functions for iterating over graph objects. For example, we can scan
all the edges of a graph (directed or undirected) by the following:

for (n = agfstnode(g); n; n = agnxtnode(g,n)) {
for (e = agfstout(g,n); e; e = agnxtout(g,e)) {

/* do something with e */
}

}

The functions agfstin(g,n) and afnxtin(g,e) are provided for walk-
ing in-edge lists.

In the case of a directed edge, the meanings of “in” and “out” are obvious. For
undirected graphs, Cgraph assigns an orientation based on the analogous order of
the two nodes when the edge is created.

To visit all the edges of a node in an undirected graph:

7

for (e = agfstedge(g,n); e; e = agnxtedge(g,e,n))
/* do something with e */

Be careful if your code deletes an edge or node during the traversal, as then the
object will no longer be valid to get the next object. This is typically handled by
code like:

for (e = agfstedge(g,n); e; e = f) {
f = agnxtedge(g,e,n))
/* delete e */

}

Traversals are guaranteed to visit the nodes of a graph, or edges of a node, in
their order of creation in the root graph (unless we allow programmers to override
object ordering, as mentioned in section 16).

7 External Attributes

Graph objects may have associated string name-value pairs. When a graph file is
read, Cgraph’s parser takes care of the details of this, so attributes can just be added
anywhere in the file. In C programs, values must be declared before use.

Cgraph assumes that all objects of a given kind (graphs/subgraphs, nodes, or
edges) have the same attributes - there’s no notion of subtyping within attributes.
Information about attributes is stored in data dictionaries. Each graph has three
(for graphs/subgraphs, nodes, and edges) for which you’ll need the predefined con-
stants AGRAPH, AGNODE and AGEDGE in calls to create, search and walk these
dictionaries.

Thus, to create an attribute for nodes, one uses:

Agsym_t *sym;
sym = agattr(g,AGNODE,"shape","box");

If this succeeds, sym points to a descriptor for the newly created (or updated) at-
tribute. (Thus, even if shape was previously declared and had some other default
value, it would be set to box by the above.)

By using a NULL pointer as the value, you can use the same function to search
the attribute definitions of a graph.

sym = agattr(g,AGNODE,"shape",0);
if (sym)

printf("The default shape is %s.\n",sym->defval);

8

If you have the pointer to some graph object, you can also use the function agattrsym.

Agnode_t* n;
Agsym_t* sym = agattrsym (n,"shape");
if (sym)

printf("The default shape is %s.\n",sym->defval);

Both functions return NULL if the attribute is not defined.
Instead of looking for a particular attribute, it is possible to iterate over all of

them:

sym = 0; /* to get the first one */
while (sym = agnxtattr(g,AGNODE,sym)

printf("%s = %s\n",sym->name,sym->defval);

Assuming an attribute already exists for some object, its value can be obtained
or set using its string name or its Agsym_t descriptor. To use the string name, we
have:

str = agget(n,"shape");
agset(n,"shape","hexagon");

If an attribute will be referenced often, it is faster to use its descriptor as an
index, as shown here:

Agsym_t *sym = agattr(g,AGNODE,"shape","box");
str = agxget(n,sym);
agxset(n,sym,"hexagon");

Cgraph provides two helper functions for dealing with attributes. The function
agsafeset(void *obj, char *name, char *value, char *def)
first checks that the attribute has been defined, defining it with the default value
def if not. It then uses value as the specific value assigned to obj.

It is sometimes useful to copy all of the values from one object to another. This
can be easily done using agcopyattr(void *src, void* tgt). This as-
sumes that the source and target are the same type of graph objects, and that the
attributes of src have already been defined for tgt. If src and tgt belong to
the same root graph, this will automatically be true.

9

8 Internal Attributes

It would be possible to do everything using just string-valued attributes. In general,
though, this will be too inefficient. To deal with this, each graph object (graph, node
or edge) may have a list of associated internal data records. The layout of each such
record is programmer-defined, except each must have an Agrec_t header. The
records are allocated through Cgraph. For example:

typedef struct mynode_s {
Agrec_t h;
int count;

} mynode_t;

mynode_t *data;
Agnode_t *n;
n = agnode(g,"mynodename",TRUE);
data = (mynode_t*)agbindrec(n,"mynode_t",

sizeof(mynode_t),FALSE);
data->count = 1;

In a similar way, aggetrec searches for a record, returning a pointer to the
record if it exists and NULL otherwise; agdelrec removes a record from an
object.

Although each graph object may have its own unique, individual collection of
records, for convenience, there are functions that update an entire graph by allo-
cating or removing the same record from all nodes, edges or subgraphs at the same
time. These functions are:

void aginit(Agraph_t *g, int kind, char *rec_name,
int rec_size, int move_to_front);

void agclean(Agraph_t *g, int kind, char *rec_name);

Note that in addition to agdelrec and agclean, records are removed and
their storage freed when their associated graph object is deleted. Only the record
data structure is freed. If the application has attached any additional heap memory
to a record, it is the responsibility of the application to handle this before the actual
record is deleted.

For further efficiency, there is a way to “lock” the data pointer of a graph object
to point to a given record. This can be done by using TRUE as the last argument in
agbindrec, aginit or aggetrec. If this is done, in the above example we
could then simply cast this pointer to the appropriate type for direct (un-typesafe)
access to the data.

10

(mydata_t*) (n->base.data)->count = 1;

Typically, it is convenient to encapsulate this access using macros. For exam-
ple, we may have:

#define ND_count(n) (((mydata_t*)(AGDATA(n)))->count)
ND_count(n) = 1;

As this is unsafe if the record was not allocated for some object, it is good form
to two versions of the macro:

#ifdef DEBUG
#define ND_count(n) \

(assert(aggetrec(n,"mynode_t",1)),((mynode_t*)(AGDATA(n)))->count)
#else
#define ND_count(n) (((mydata_t*)(AGDATA(n)))->count)
#endif

9 Subgraphs

Subgraphs are an important construct in Cgraph. They are intended for organizing
subsets of graph objects and can be used interchangeably with top-level graphs in
almost all Cgraph functions.

A subgraph may contain any nodes or edges of its parent. (When an edge is
inserted in a subgraph, its nodes are also implicitly inserted if necessary. Similarly,
insertion of a node or edge automatically implies insertion in all containing sub-
graphs up to the root.) Subgraphs of a graph form a hierarchy (a tree). Cgraph has
functions to create, search, and iterate over subgraphs.

For example,

Agraph_t *g, *h;

/* search for subgraph by name */
h = agsubg(g,"mysubgraph",FALSE);
if (!h)

/* create subgraph by name */
h = agsubg(g,"mysubgraph",TRUE);

for (h = agfstsubg(g); h; h = agnxtsubg(h)) {
/* agparent is up one level */

assert (g == agparent(h));

11

/* Use subgraph h */
}

The function agparent returns the (sub)graph immediately containing the
argument subgraph. The iteration done using agfstsubg and agnxtsubg re-
turns only immediate subgraphs. To find subgraphs further down the hierarchy
requires a recursive search.

It is not uncommon to want to populate a subgraph with nodes and edges that
have already been created. This can be done using the functions agsubnode and
agsubedge,

Agnode_t *agsubnode(Agraph_t *g, Agnode_t *n, int create);
Agedge_t *agsubedge(Agraph_t *g, Agedge_t *e, int create);

which take a subgraph, and an object from another subgraph of the same graph (or
possibly a top-level object) and add it to the argument subgraph if the create flag
is TRUE. It is also added to all enclosing subgraphs, if necessary. If the create
flag is FALSE, then the request is only treated as a search and returns NULL for
failure.

A subgraph can be removed by agdelsubg(g,subg) or by agclose(subg).

10 Utility Functions and Macros

For convenience, Cgraph provides some polymorphic functions and macros that
apply to all Cgraph objects. (Most of these functions could be implemented in
terms of others already described, or by accessing fields in the Agobj_t base
object.

• AGTYPE(obj): object type - AGRAPH, AGNODE, or AGEDGE

• AGID(obj): internal object ID (an unsigned long)

• AGSEQ(obj): object creation timestamp (an integer)

• AGDATA(obj): data record pointer (an Agrec_t*)

Other useful functions include:

/* Returns root graph of obj */
Agraph_t *agroot(void* obj);

/* Returns root graph of obj or obj if a (sub)graph */
Agraph_t *agraphof(void* obj);

12

/* True of obj belongs to g */
int agcontains(Agraph_t *g, void *obj);

/* Delete obj from the (sub)graph */
int agdelete(Agraph_t *g, void *obj);

/* Synonym of AGTYPE */
int agobjkind(void *obj);

A root graph g will always have

g == agroot(g) == agraphof(g)

11 Error Handling

Cgraph provides some basic error handling functions, hampered by the lack of
exceptions in C. At present, there are basically two types of anomalies: warnings
and errors.

To report an anomaly, one uses:

typedef enum { AGWARN, AGERR, AGMAX, AGPREV
} agerrlevel_t;

int agerr(agerrlevel_t level, const char *fmt, ...);

The agerr function has a printf-interface, with the first argument indicating
the severity of the problem. A message is only written if its severity is higher than
a programmer-controlled minimum, which is AGWARN by default. The program-
mer can set this value using agseterr, which returns the previous value. Calling
agseterr(AGMAX) turns off the writing of messages.

Sometimes additional context information is only available in functions calling
the function where the error is actually caught. In this case, the calling function
can indicate that it is continuing the current error by using AGPREV as the first
argument.

The function agwarningf is shorthand for agerr(AGWARN,...); simi-
larly, agerrorf is shorthand for agerr(AGERR,...).

Some applications desire to directly control the writing of messages. Such an
application can use the function agseterrf to register a function that the library
should call to actually write the message:

typedef int (*agusererrf) (char*);

agusererrf agseterrf(agusererrf);

13

The previous error function is returned. By default, the messages are written to
stderr. Errors not written are stored in a log file. The last recorded error can be
retrieved by calling aglasterr. The function agerrors returns the maximum
severity reported to agerr. The function agreseterrors is identical, except
it also resets the error level as though no errors have been reported.

12 Strings

As mentioned, Cgraph maintains a reference-counted shared string pool for each
graph. As there are often many identical strings used in a graph, this helps to reduce
the memory overhead.

char *agstrdup(Agraph_t *, char *);
char *agstrbind(Agraph_t *, char*);
int agstrfree(Agraph_t *, char *);

char *agstrdup_html(Agraph_t *, char *);
int aghtmlstr(char *);

char *agcanonStr(char *str);
char *agstrcanon(char *, char *);
char *agcanon(char *, int);

Cgraph has functions to directly create and destroy references to shared strings. As
with any reference-counted object, you can use these as ordinary strings, though
the data should not be modified. If you need to store the pointer in some data
structure, you should call agstrdup(g,s). This will create a new copy of s
if necessary, and increment the count of references, ensuring that the string will
not be freed by some other part of the program while you are still using it. Since
agstrdup makes a copy of the string, the argument string can use temporary
storage.

A call to agstrfree(g,s) decrements the reference count and, if this be-
comes zero, frees the string. The function agstrbind(g,s) checks if a shared
string identical to s exists and, if so, returns it. Otherwise, it returns NULL.

The DOT language supports a special type of string, containing HTML-like
markups. To make sure that the HTML semantics are used, the application should
call agstrdup_html(g,s) rather than agstrdup(g,s). The following code
makes sure the node’s label will be interpreted as an HTML-like string and appear
as a table. If agstrdup were used, the label would appear as the literal string s.

Agraph_t* g;

14

Agnode_t* n;
char* s = "<TABLE><TR><TD>one cell</TD></TR></TABLE>";
agset (n, "label", agsgtrdup_html (g,s));

The predicate aghtmlstr returns TRUE if the argument string is marked as an
HTML-like string. N.B. This is only valid if the argument string is a shared string.
HTML-like strings are also freed using agstrfree.

The DOT language uses various special characters and escape sequences. When
writing out strings as concrete text, it is important that these lexical features are
used in order that the string can be re-read as DOT and be interpreted correctly.
Cgraph provides three functions to handle this. The simplest is agcanonStr(s).
It returns a pointer to a canonical version of the input string. It uses an internal
buffer, so the returned string should be written or copied before another call to
agcanonStr. agstrcanon(s,buf) is identical, except the calling function
also supplies a buffer where the canonical version may be written. An application
should only use the returned pointer, as it is possible the buffer will not be used at
all. The buffer needs to be large enough to hold the canonical version. Normally,
an expansion of 2*strlen(s)+2 is sufficient.

Both agcanonStr and agstrcanon assume that string argument is a shared
string. For convenience, the library also provides the function agcanon(s,h).
This is identical to agcanonStr(s), except s can be any string. If h is TRUE,
the canonicalization assumes s is an HTML-like string.

13 Expert-level Tweaks

13.1 Callbacks

There is a way to register client functions to be called whenever graph objects
are inserted into or deleted from a graph or subgraph, or have their string at-
tributes modified. The arguments to the callback functions for insertion and dele-
tion (an agobjfn_t) are the containing (sub)graph, the object and a pointer to
a piece of state data supplied by the application. The object update callback (an
agobjupdfn_t) also receives the data dictionary entry pointer for the name-
value pair that was changed. The graph argument will be the root graph.

typedef void (*agobjfn_t)(Agraph_t*, Agobj_t*, void*);
typedef void (*agobjupdfn_t)(Agraph_t*, Agobj_t*,

void*, Agsym_t*);

struct Agcbdisc_s {

15

struct {
agobjfn_t ins;
agobjupdfn_t mod;
agobjfn_t del;

} graph, node, edge;
};

Callback functions are installed by agpushdisc, which also takes a pointer
to the client data structure state that is later passed to the callback function when
it is invoked.

agpushdisc(Agraph_t *g, Agcbdisc_t *disc, void *state);

Callbacks are removed by agpopdisc, which deletes a previously installed
set of callbacks anywhere in the stack. This function returns zero for success. (In
real life, this function isn’t used much; generally callbacks are set up and left alone
for the lifetime of a graph.)

int agpopdisc(Agraph_t *g, Agcbdisc_t *disc);

The default is for callbacks to be issued synchronously, but it is possible to
hold them in a queue of pending callbacks to be delivered on demand. This feature
is controlled by the interface:

/* returns previous value */
int agcallbacks(Agraph_t *g, int flag);

If the flag is zero, callbacks are kept pending. If the flag is one, pending call-
backs are immediately issued, and the graph is put into immediate callback mode.
(Therefore the state must be reset via agcallbacks if they are to be kept pending
again.)

N.B.: it is a small inconsistency that Cgraph depends on the client to maintain
the storage for the callback function structure. (Thus it should probably not be
allocated on the dynamic stack.) The semantics of agpopdisc currently identify
callbacks by the address of this structure so it would take a bit of reworking to fix
this. In practice, callback functions are usually passed in a static struct.

13.2 Disciplines

A graph has an associated set of methods (“disciplines”) for file I/O, memory man-
agement and graph object ID assignment.

16

typedef struct {
Agmemdisc_t *mem;
Agiddisc_t *id;
Agiodisc_t *io;

} Agdisc_t;

A pointer to an Agdisc_t structure is used as an argument when a graph is cre-
ated or read using agopen, agread and agconcat. If the pointer is NULL, the
default Cgraph disciplines are used. An application can pass in its own disciplines
to override the defaults. Note that it doesn’t need to provide disciplines for all three
fields. If any field is the NULL pointer, Cgraph will use the default discipline for
that task.

The default disciplines are also accessible by name.

Agmemdisc_t AgMemDisc;
Agiddisc_t AgIdDisc;
Agiodisc_t AgIoDisc;
Agdisc_t AgDefaultDisc;

This is useful because, unlike with Agdisc_t, all of the fields of specific disci-
plines must be non-NULL.

Cgraph copies the three individual pointers. Thus, these three structures must
remain allocated for the life of the graph, though the Agdisc_t may be tempo-
rary.

13.2.1 Memory management

The memory management discipline allows calling alternative versions of malloc,
particularly, Vo’s Vmalloc, which offers memory allocation in arenas or pools. The
benefit is that Cgraph can allocate a graph and its objects within a shared pool, to
provide fine-grained tracking of its memory resources and the option of freeing
the entire graph and associated objects by closing the area in constant time, if
finalization of individual graph objects isn’t needed.5

typedef struct Agmemdisc_s {
void *(*open)(void);
void *(*alloc)(void *state, size_t req);
void *(*resize)(void *state, void *ptr, size_t old,

size_t req);
void (*free)(void *state, void *ptr);

5This could be fixed.

17

void (*close)(void *state);
} Agmemdisc_t;

When a graph is created, but before any memory is allocated, Cgraph calls the
discipline’s open function. The application should then perform any necessary
initializations of its memory system, and return a pointer to any state data structure
necessary for subsequent memory allocation. When the graph is closed, Cgraph
will call the discipline’s close function, passing it the associated state, so the
application can finalize and free any resources involved.

The other three discipline functions alloc, resize and free should have
semantics roughly identical to the standard C library functions malloc, realloc
and free. The main difference is that any new memory returned by alloc and
resize should be zeroed out, and that resize is passed the old buffer size in
addition to the requested new size. In addition, they all take the memory state as
the first argument.

To simplify the use of the memory discipline, Cgraph provides three wrapper
functions that hide the task of obtaining the memory state. These are the same
functions Cgraph uses to handle memory for a graph.

void *agalloc(Agraph_t *g, size_t size);
void *agrealloc(Agraph_t *g, void *ptr, size_t oldsize,

size_t size);
void agfree(Agraph_t *g, void *ptr);

13.2.2 I/O management

The I/O discipline is probably the most frequently used of the three, as the I/O
requirements of applications vary widely.

typedef struct Agiodisc_s {
int (*afread)(void *chan, char *buf, int bufsize);
int (*putstr)(void *chan, char *str);
int (*flush)(void *chan);

} Agiodisc_t ;

The default I/O discipline uses stdio and the FILE structure for reading and writ-
ing. The functions afread, putstr and flush should have semantics roughly
equivalent to fread, fputs and fflush, with the obvious permutation of argu-
ments.

The implementation of the agmemread function of Cgraph provides a typi-
cal example of using a tailored I/O discipline. The idea is to read a graph from

18

a given string of characters. The implementation of the function is given be-
low. The rdr_t provides a miniature version of FILE, providing the necessary
state information. The function memiofread fills the role of afread using the
state provided by rdr_t. The agmemread puts everything together, creating
the needed state using the argument string, and constructing a discipline structure
using memiofread and the defaults. It then calls agread with the state and
discipline to actually create the graph.

typedef struct {
const char *data;
int len;
int cur;

} rdr t;

static int memiofread(void *chan, char *buf, int bufsize)
{

const char *ptr;
char *optr; 10
char c;
int l;
rdr t *s;

if (bufsize == 0) return 0;
s = (rdr t *) chan;
if (s−>cur >= s−>len)

return 0;
l = 0;
ptr = s−>data + s−>cur; 20
optr = buf;
do {

*optr++ = c = *ptr++;
l++;

} while (c && (c != ’\n’) && (l < bufsize));
s−>cur += l;
return l;

}

static Agiodisc t memIoDisc = {memiofread, 0, 0}; 30

Agraph t *agmemread(const char *cp)
{

rdr t rdr;
Agdisc t disc;
Agiodisc t memIoDisc;

memIoDisc.putstr = AgIoDisc.putstr;
memIoDisc.flush = AgIoDisc.flush;

19

rdr.data = cp; 40
rdr.len = strlen(cp);
rdr.cur = 0;

disc.mem = NULL;
disc.id = NULL;
disc.io = &memIoDisc;
return agread (&rdr, &disc);

}

13.2.3 ID management

Graph objects (nodes, edges, subgraphs) use an uninterpreted long integer value
as keys. The ID discipline gives the application control over how these keys are
allocated, and how they are mapped to and from strings. The ID discipline makes it
possible for a Cgraph client control this mapping. For instance, in one application,
the client may create IDs that are pointers into another object space defined by a
front-end interpreter. In general, the ID discipline must provide a map between
internal IDs and external strings.

typedef unsigned long ulong;

typedef struct Agiddisc_s {
void *(*open)(Agraph_t *g, Agdisc_t*);
long (*map)(void *state, int objtype, char *name,

ulong *id, int createflag);
long (*alloc)(void *state, int objtype, ulong id);
void (*free)(void *state, int objtype, ulong id);
char *(*print)(void *state, int objtype, ulong id);
void (*close)(void *state);
void (*idregister) (void *state, int objtype, void *obj);

} Agiddisc_t;

The open function permits the ID discipline to initialize any data structures
that it maintains per individual graph. Its return value is then passed as the first
argument (void *state) to all subsequent ID manager calls. When the graph is
closed, the discipline’s close function is called to allow for finalizing and freeing
any resources used.

The alloc and free functions explicitly create and destroy IDs. The former
is used by Cgraph to see if the given ID is available for use. If it is available, the
function should allocate it and return TRUE; otherwise, it should return FALSE.

20

If it is not available, the calling function will abort the operation. free is called
to inform the ID manager that the object labeled with the given ID is about to be
deleted.

If supported buy the ID discipline, the map function is called to convert a string
name into an ID for a given object type (AGRAPH, AGNODE, or AGEDGE), with
an optional flag that tells if the ID should be allocated if it does not already exist.

There are four cases:

name && createflag Map the string (e.g., a name in a graph file) into an ID.
If the ID manager can comply, then it stores the result in the id parameter
and returns TRUE. It is then also responsible for being able to print the ID
again as a string. Otherwise, the ID manager may return FALSE but it must
implement the following case, at least in order for the reading and writing of
graph files to work.

!name && createflag Create a unique new ID. It may return FALSE if it
does not support anonymous objects, but this is strongly discouraged in order
for Cgraph to support “local names” in graph files.

name && !createflag Test if name has already been mapped and allocated.
If so, the ID should be returned in the id parameter. Otherwise, the ID
manager may either return FALSE, or may store any unallocated ID into
result. This is convenient, for example, if names are known to be digit strings
that are directly converted into integer values.

!name && !createflag Never used.

The print function is called to convert an internal ID back to a string. It is
allowed to return a pointer to a static buffer; a caller must copy its value if needed
past subsequent calls. NULL should be returned by ID managers that do not map
names.

Note that the alloc and map functions do not receive pointers to any newly
created object. If a client needs to install object pointers in a handle table, it can
obtain them via new object callbacks (Section 13.1).

To make this mechanism accessible, Cgraph provides functions to create ob-
jects by ID instead of external name:

Agnode_t *agidnode(Agraph_t *g, unsigned long id, int create);
Agedge_t *agidedge(Agraph_t *g, Agnode_t *t, Agnode_t *h,

unsigned long id, int create);
Agraph_t *agidsubg(Agraph_t *g, unsigned long id, int create);

Note that, with the default ID discipline, these functions return NULL.

21

13.3 Flattened node and edge lists

For random access, nodes and edges are usually stored in splay trees. This adds a
small but noticeable overhead when traversing the “lists.” For flat-out efficiency,
there is a way of linearizing the splay trees in which node and edge sets are stored,
converting them into flat lists. After this they can be traversed very quickly. The
function agflatten(Agraph_t *g, int flag) will flatten the trees if
flag is TRUE, or reconstruct the trees if flag is FALSE. Note that if any call
adds or removes a graph object, the corresponding list is automatically returned to
its tree form.

The library provides various macros to automate the flattening and simplify the
standard traversals. For example, the following code performs the usual traversal
over all out-edges of a graph:

Agnode_t* n;
Agedge_t* e;
Agnoderef_t* nr;
Agedgeref_t* er;
for (nr = FIRSTNREF(g); nr; nr = NEXTNREF(g,nr)) {

n = NODEOF(nr);
/* do something with node n */
for (er = FIRSTOUTREF(g,nr); er; er = NEXTEREF(g,er)) {

e = EDGEOF(er);
/* do something with edge e */

}
}

Compare this with the code in shown on page 7.

14 Related Libraries

Libgraph is a predecessor of Cgraph and is now considered obsolete. All of the
Graphviz code is now written using Cgraph. As some older applications using lib-
graph may need to be converted to Cgraph, we note some of the main differences.

A key difference between the two libraries is the handling of C data struc-
ture attributes. Libgraph hard-wires these at the end of the graph, node and edge
structuress. That is, an application programmer defines the structs graphinfo,
nodeinfo and edgeinfo before including graph.h, and the library inquires
of the size of these structures at runtime so it can allocate graph objects of the
proper size. Because there is only one shot at defining attributes, this design cre-
ates an impediment to writing separate algorithm libraries. The dynamic Agrec_t

22

structures, described in Section 8, allows each algorithm to attach its own required
data structure.

In Cgraph, the nesting of subgraphs forms a tree. In libgraph, a subgraph can
belong to more than one parent, so they form a DAG (directed acyclic graph).
Libgraph actually represents this DAG as a special meta-graph that is navigated by
libgraph calls. After gaining experience with libgraph, we decided this complexity
was not worth its cost.

Finally, there are some small syntactic differences in the APIs. For example, in
libgraph”, the name of a node or graph and the head and tail nodes of an edge are
directly accessible via pointers while in Cgraph, it is necessary to use the functions
agnameof, agtail and aghead. Libgraph tends to have separate functions
for creating and finding an object, or for handling different types of objects, e.g.,
agnode and agfindnode. Instead, Cgraph will use a single function with an
additional parameter. Overall, the two libraries are vary close, both syntactically
and semantically, so conversion is fairly straightforward.

Lgraph is a successor to Cgraph, written in C++ by Gordon Woodhull. It
follows Cgraph’s overall graph model (particularly, its subgraphs and emphasis on
efficient dynamic graph operations) but uses the C++ type system of templates and
inheritance to provide typesafe, modular and efficient internal attributes. (LGraph
relies on cdt for dictionary sets, with an STL-like C++ interface layer.) A fairly
mature prototype of the Dynagraph system (a successor to dot and neato to handle
online maintenance of dynamic diagrams) has been prototyped in LGraph. See
the dgwin (Dynagraph for Windows) page http://www.dynagraph.org/
dgwin/ for further details.

15 Interfaces to Other Languages

If enabled, the Graphviz package contains bindings for Cgraph in a variety of lan-
guages, including Java, Perl, PHP, Tcl, Python and Ruby.

16 Open Issues

Node and Edge Ordering. The intent in Cgraph’s design was to eventually sup-
port user-defined node and edge set ordering, overriding the default (which is ob-
ject creation timestamp order). For example, in topologically embedded graphs,
edge lists could potentially be sorted in clockwise order around nodes. Because
Cgraph assumes that all edge sets in the same Agraph_t have the same ordering,
there should probably be a new primitive to switching node or edge set ordering
functions. Please contact the author if you need this feature.

23

XML. XML dialects such as GXL and GraphML have been proposed for
graphs. Although it is simple to encode nodes and edges in XML, there are sub-
tleties to representing more complicated structures, such as Cgraph’s subgraphs
and nesting of attribute defaults. On the other hand, GXL and GraphML provide
notions of compound graphs, which are not available in DOT. We’ve prototyped
an XML parser and would like to complete and release this work if we had a com-
pelling application. (Simple XML output of graphs is not difficult to program.)

Graph views; external graphs. At times it would be convenient to relate one
graph’s objects to another’s without making one into a subgraph of another. At
other times there is a need to populate a graph from objects delivered on demand
from a foreign API (such as a relational database that stores graphs). We are now
experimenting with attacks on some of these problems.

Additional primitives. To be done: Object renaming, cloning, first-class
nodes and edges, etc.

17 Example

The following is a simple Cgraph filter that reads a graph and emits its strongly
connected components, each as a separate graph, plus an overview map of the
relationships between the components. To save space, the auxiliary functions in the
header ingraph.h are not shown; the entire program can be found in the Graphviz
source code release under cmd/tools.

About lines 32-41 are the declarations for internal records for graphs and nodes.
Line 43-48 define access macros for fields in these records. Lines 52-83 define a
simple stack structure needed for the strongly connected component algorithm and
down to line 97 are some global definitions for the program.

The rest of the code can be read from back-to-front. From around line 262
to the end is boilerplate code that handles command-line arguments and opening
multiple graph files. The real work is done starting with the function process about
line 223, which works on one graph at a time. After initializing the node and graph
internal records using it aginit, it creates a new graph for the overview map, and
it calls visit on unvisited nodes to find components. visit implements a standard
algorithm to form the next strongly connected component on a stack. When one
has been completed, a new subgraph is created and the nodes of the component
are installed. (There is an option to skip trivial components that contain only one
node.) nodeInduce is called to process the out-edges of nodes in this subgraph.
Such edges either belong to the component (and are added to it), or else point to a
node in another component that must already have been processed.

24

/***
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors: See CVS logs. Details at http://www.graphviz.org/
***/ 10

#ifdef HAVE CONFIG H
#include "config.h"
#endif

#include <stdio.h>
#include <stdlib.h>
#ifdef HAVE UNISTD H
#include <unistd.h>
#endif 20
#include "cgraph.h"
#include "ingraphs.h"

#ifdef HAVE GETOPT H
#include <getopt.h>
#else
#include "compat_getopt.h"
#endif

#define INF ((unsigned int)(−1)) 30

typedef struct Agraphinfo t {
Agrec t h;
Agnode t *rep;

} Agraphinfo t;

typedef struct Agnodeinfo t {
Agrec t h;
unsigned int val;
Agraph t *scc; 40

} Agnodeinfo t;

#define getrep(g) (((Agraphinfo t*)(g−>base.data))−>rep)
#define setrep(g,rep) (getrep(g) = rep)
#define getscc(n) (((Agnodeinfo t*)((n)−>base.data))−>scc)
#define setscc(n,sub) (getscc(n) = sub)
#define getval(n) (((Agnodeinfo t*)((n)−>base.data))−>val)
#define setval(n,newval) (getval(n) = newval)

25

/********* stack ***********/ 50
typedef struct {

Agnode t **data;
Agnode t **ptr;

} Stack;

static void initStack(Stack * sp, int sz)
{

sp−>data = (Agnode t **) malloc(sz * sizeof(Agnode t *));
sp−>ptr = sp−>data;

} 60

static void freeStack(Stack * sp)
{

free(sp−>data);
}

static void push(Stack * sp, Agnode t * n)
{

*(sp−>ptr++) = n;
} 70

static Agnode t *top(Stack * sp)
{

return *(sp−>ptr − 1);
}

static Agnode t *pop(Stack * sp)
{

sp−>ptr−−;
return *(sp−>ptr); 80

}

/********* end stack ***********/

typedef struct {
int Comp;
int ID;
int N nodes in nontriv SCC;

} sccstate;
90

static int wantDegenerateComp;
static int Silent;
static int StatsOnly;
static int Verbose;
static char *CmdName;
static char **Files;
static FILE *outfp; /* output; stdout by default */

26

static void nodeInduce(Agraph t * g, Agraph t * map)
{ 100

Agnode t *n;
Agedge t *e;
Agraph t *rootg = agroot(g);

for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
for (e = agfstout(rootg, n); e; e = agnxtout(rootg, e)) {

if (agsubnode(g, aghead(e), FALSE))
agsubedge(g, e, TRUE);

else { 110
Agraph t *tscc = getscc(agtail(e));
Agraph t *hscc = getscc(aghead(e));
if (tscc && hscc)

agedge(map, getrep(tscc),
getrep(hscc), NIL(char *), TRUE);

}
}

}
}

120
static int visit(Agnode t * n, Agraph t * map, Stack * sp, sccstate * st)
{

unsigned int m, min;
Agnode t *t;
Agraph t *subg;
Agedge t *e;

min = ++(st−>ID);
setval(n, min);
push(sp, n); 130

for (e = agfstout(n−>root, n); e; e = agnxtout(n−>root, e)) {
t = aghead(e);
if (getval(t) == 0)

m = visit(t, map, sp, st);
else

m = getval(t);
if (m < min)

min = m;
} 140

if (getval(n) == min) {
if (!wantDegenerateComp && (top(sp) == n)) {

setval(n, INF);
pop(sp);

} else {
char name[32];

27

Agraph t *G = agraphof(n);;
sprintf(name, "cluster_%d", (st−>Comp)++);
subg = agsubg(G, name, TRUE); 150
agbindrec(subg, "scc_graph", sizeof(Agraphinfo t), TRUE);
setrep(subg, agnode(map, name, TRUE));
do {

t = pop(sp);
agsubnode(subg, t, TRUE);
setval(t, INF);
setscc(t, subg);
st−>N nodes in nontriv SCC++;

} while (t != n);
nodeInduce(subg, map); 160
if (!StatsOnly)

agwrite(subg, outfp);
}

}
return min;

}

static int label(Agnode t * n, int nodecnt, int *edgecnt)
{

Agedge t *e; 170

setval(n, 1);
nodecnt++;
for (e = agfstedge(n−>root, n); e; e = agnxtedge(n−>root, e, n)) {

(*edgecnt) += 1;
if (e−>node == n)

e = agopp(e);
if (!getval(e−>node))

nodecnt = label(e−>node, nodecnt, edgecnt);
} 180
return nodecnt;

}

static int
countComponents(Agraph t * g, int *max degree, float *nontree frac)
{

int nc = 0;
int sum edges = 0;
int sum nontree = 0;
int deg; 190
int n edges;
int n nodes;
Agnode t *n;

for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
if (!getval(n)) {

28

nc++;
n edges = 0;
n nodes = label(n, 0, &n edges);
sum edges += n edges; 200
sum nontree += (n edges − n nodes + 1);

}
}
if (max degree) {

int maxd = 0;
for (n = agfstnode(g); n; n = agnxtnode(g, n)) {

deg = agdegree(g, n, TRUE, TRUE);
if (maxd < deg)

maxd = deg;
setval(n, 0); 210

}
*max degree = maxd;

}
if (nontree frac) {

if (sum edges > 0)
*nontree frac = (float) sum nontree / (float) sum edges;

else
*nontree frac = 0.0;

}
return nc; 220

}

static void process(Agraph t * G)
{

Agnode t *n;
Agraph t *map;
int nc = 0;
float nontree frac = 0;
int Maxdegree = 0;
Stack stack; 230
sccstate state;

aginit(G, AGRAPH, "scc_graph", sizeof(Agraphinfo t), TRUE);
aginit(G, AGNODE, "scc_node", sizeof(Agnodeinfo t), TRUE);
state.Comp = state.ID = 0;
state.N nodes in nontriv SCC = 0;

if (Verbose)
nc = countComponents(G, &Maxdegree, &nontree frac);

240
initStack(&stack, agnnodes(G) + 1);
map = agopen("scc_map", Agdirected, (Agdisc t *) 0);
for (n = agfstnode(G); n; n = agnxtnode(G, n))

if (getval(n) == 0)
visit(n, map, &stack, &state);

29

freeStack(&stack);
if (!StatsOnly)

agwrite(map, outfp);
agclose(map);

250
if (Verbose)

fprintf(stderr, "%d %d %d %d %.4f %d %.4f\n",
agnnodes(G), agnedges(G), nc, state.Comp,
state.N nodes in nontriv SCC / (double) agnnodes(G),
Maxdegree, nontree frac);

else if (!Silent)
fprintf(stderr, "%d nodes, %d edges, %d strong components\n",

agnnodes(G), agnedges(G), state.Comp);

} 260

static FILE *openFile(char *name, char *mode)
{

FILE *fp;
char *modestr;

fp = fopen(name, mode);
if (!fp) {

if (*mode == ’r’)
modestr = "reading"; 270

else
modestr = "writing";

fprintf(stderr, "gvpack: could not open file %s for %s\n",
name, modestr);

exit(1);
}
return (fp);

}

static char *useString = "Usage: %s [-sdv?] <files>\n\ 280
-s - only produce statistics\n\
-S - silent\n\
-d - allow degenerate components\n\
-o<outfile> - write to <outfile> (stdout)\n\
-v - verbose\n\
-? - print usage\n\

If no files are specified, stdin is used\n";

static void usage(int v)
{ 290

printf(useString, CmdName);
exit(v);

}

30

static void scanArgs(int argc, char **argv)
{

int c;

CmdName = argv[0];
opterr = 0; 300
while ((c = getopt(argc, argv, ":o:sdvS")) != EOF) {

switch (c) {
case ’s’:

StatsOnly = 1;
break;

case ’d’:
wantDegenerateComp = 1;
break;

case ’o’:
outfp = openFile(optarg, "w"); 310
break;

case ’v’:
Verbose = 1;
break;

case ’S’:
Verbose = 0;
Silent = 1;
break;

case ’?’:
if (optopt == ’?’) 320

usage(0);
else

fprintf(stderr, "%s: option -%c unrecognized - ignored\n",
CmdName, optopt);

break;
}

}
argv += optind;
argc −= optind;

330
if (argc)

Files = argv;
if (!outfp)

outfp = stdout; /* stdout the default */
}

static Agraph t *gread(FILE * fp)
{

return agread(fp, (Agdisc t *) 0);
} 340

int main(int argc, char **argv)
{

31

Agraph t *g;
ingraph state ig;

scanArgs(argc, argv);
newIngraph(&ig, Files, gread);

while ((g = nextGraph(&ig)) != 0) { 350
if (agisdirected(g))

process(g);
else

fprintf(stderr, "Graph %s in %s is undirected - ignored\n",
agnameof(g), fileName(&ig));

agclose(g);
}

return 0;
} 360

32

